

Co-funded by the Intelligent Energy Europe Programme of the European Union

Community Energy Workshop Energy Show 2016

7th April 2016

Michael Hanratty, IHER Energy Services Ltd michael@iher.ie

"The sole responsibility for the content of this presentation lies with the authors. It does not represent the opinion of the Community. The European Commission is not responsible for any use that may be made of the information contained therein."

Intelligent Energy Europe EPISCOPE Project (2013-2016)

TABULA

- Follow-on from TABULA (2009-2012) & DATAMINE (2006-2008)
- Partners in 16 Member States
- > Objectives:
 - To produce National Building Typologies
 - To develop Methods to Track the Refurbishment of Housing Stocks (local and national), e.g. what proportion stock has been refurbished to date?, what proportion of dwellings are getting energy upgrade works done each year?

Irish Building Typology

Building Typology Brochure Ireland

A detailed study on the energy performance of typical Irish dwellings August 2014

- 3 new dwelling types
- standard and advanced upgrade analysis for all existing dwelling

www.episcope.eu

http://episcope.eu/fileadmin/tabula/public/docs/brochure/ IE_TABULA_TypologyBrochure_EnergyAction.pdf

Welcome Building Typology Building Stock Monitoring Download & Contact IEE Project

> Welcome

Welcome to the joint EPISCOPE and TABULA Website

2016-02 | Excel workbook "tabula-calculator.xlsx" published - includes current TABULA typology data | <LINK>

2015-11 | EPISCOPE Tool included in the BPIE Data Hub launched | <LINK>

2015-11 | TABULA WebTool: new version published | <LINK>

2015-03 | Mapping Tool showing Energy Efficiency of Housing on the Northside of Dublin City | <LINK>

2014-11 | Report: Inclusion of New Buildings / NZEBs in Residential Building Typologies | Download <PDF>

Download the presentations from the EPISCOPE Experts' Workshop, 18 November 2015 in B

The European project EPISCOPE has been launched in April 2013 as a follow-up of the TABULA project. The typology concepts and contents developed during TABULA form an integral part of the new project and are therefore presented at this joint website together with the new EPISCOPE focus of building stock monitoring.

IEE Project EPISCOPE

20 national typology brochures

- TABULA webtool
- •16 pilot action reports

www.episcope.eu

Co-funded by the Intelligent Energy Europe Programme of the European Union

Basic Idea

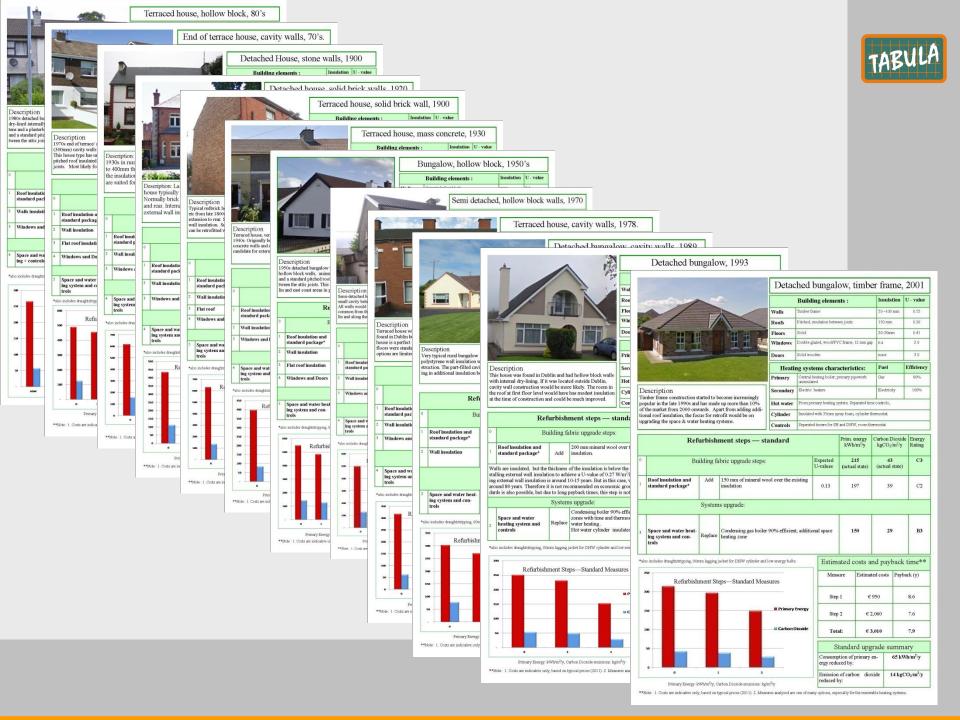
For more information about building typologies consult the TABULA website section:

TABULA

The overall strategic objective of the EPISCOPE project is to make the

Existing Buildings: Revised Upgrade Measures (2014)

	Standard Level Measures	Advanced Level Measures	
Roof U-Value	0.13W/m²K	0.13 W/m²K	
Flat roofs	0.22 W/m ² K	0.22 W/m ² K	
Wall U-Value 0.27 W/m ² K - 0.48 W/m ² K*		0.15 W/m ² K – 0.27W/m ² K	
Wooden Floor (replace)	0.25 W/m ² K	0.25 W/m ² K	
Windows U-Value	1.4 W/m ² K**	0.9 W/m ² K	
Doors	2.0 W/m ² K	1.5 W/m ² K	
Space heat generator efficiency	90% gas, 90% oil, 89.5% Condensing Wood Pellet Boiler	Air Source Heat pump: 380% min, Ground Source Heat Pump: 400% min, Air to Air Heat Pump 270% min	
Water heat generator efficiency 90% gas, 90% oil, 89.5% Condensing Wood Pellet Boiler		Air Source Heat pump: 380% min, Ground Source Heat Pump: 400% min, Air to Air Heat Pump 270 min	
Solar Thermal		40% contribution of total energy (10% electric immersion)	
Heating controls	Full zone control	Full zone control	
Cylinder Insulation	50mm, spray foam	Increased Capacity Cylinder* with 50mm spray foam	
Mechanical Heat Recovery Ventilation		92% minimum efficiency, AP<5 m3/hr/m ² **	
Demand Control Extract Ventilation		Specific Fan Power min 0.18W/I/s	
Photovoltaic panels		4-8 panels***	



No.	Age Band:	House type	Current State	Standard Measures	Advanced Measures
1	1800-1899	SFH.01.Gen	G	В3	B1
2	1800-1899	TH.01.Gen	G	В3	B2
3	1800-1899	TH.01.325SB	E2	B1	A3
4	1800-1899	SFH.01.325SB	F	B2	B1
5	1900-1929	SFH.02.Gen	G	C2	B1
6	1900-1929	TH.02.Gen	G	B2	B1
7	1900-1929	TH.02.325SB	G	C1	B1
8	1930-1949	SFH.03.Gen	G	C1	B2
9	1930-1949	TH.03.Gen	G	C1	B2
10	1950-1966	SFH.04.Gen	G	В3	B1
11	1950-1966	TH.04.Gen	G	B2	A3
12	1950-1966	TH.04.HBlockHBF	G	B2	A3
13	1967-1977	SFH.05.Gen	G	В3	A3
14	1967-1977	TH.05.Gen	G	B2	A3
15	1950-1966	AB.04.Gen	G	B1	B2
16	1978-1982	SFH.06.Gen	E2	В3	A3
17	1978-1982	TH.06.Gen	E1	B2	A3
18	1978-1982	SFH.06.HBlock	E1	B2	A3
19	1978-1982	TH.06.HBlock	E1	B2	A3
20	1983-2004	SFH.07.Gen	D2	В3	B1
21	1983-2004	TH.07.Gen	D2	В3	A3
22	1983-2004	SFH.07.Hblock	D1	В3	A3
23	1983-2004	TH.07.Hblock	D1	В3	A3
24	1983-2004	SFH.08.Gen	D2	C1	A3
25	1983-2004	TH.08.Gen	C2	B2	A2
26	1983-2004	SFH.08.Tframe	C3	C1	B1
27	1983-2004	TH.08.Gen	C3	В3	A3
28	2005-2010	SFH.09.Gen	C1	B2	A3
29	2005-2010	TH.09.Gen	В3	B2	A3
30	2005-2010	SFH.09.Tframe	C1	B1	A3
31	2005-2010	TH.09.Tframe	B2	B2	А3

Refurbishment Analysis Results

(based on DEAP BER calculation)

10. Bungalow, hollow block, 1950-1966

Typical r	oor upgrade (standard/advanced)
50mm of minerall wool between the	Refore:

Feature:

Standard Advanced

Heating system upgrade

F	Refu	rbis	hmen	t steps	— s	tand	ard

Carbon Diox-

Carbon blox	LITERSY
ide	Rating
kgCO ₂ /m ² /y	
Carbon Dioxide kgCO ₂ /m²/y	Energy Rating

Refurbishment steps — advanced	
--------------------------------	--

— auvani	eu

kWh/m²/y

Prim. energy

Prim. energy

kWh/m²/y

140 G

Building fabric upgrade steps:

Expected Uvalues

544 (actual state) (actual state)

Add Roof insulation and standard package*

250 mm mineral wool between and over the ceiling joists and installation of required roof vents .

0.13

481

125

1 2

0

Add 150-200mm external insulation to both wall types Wall insulation

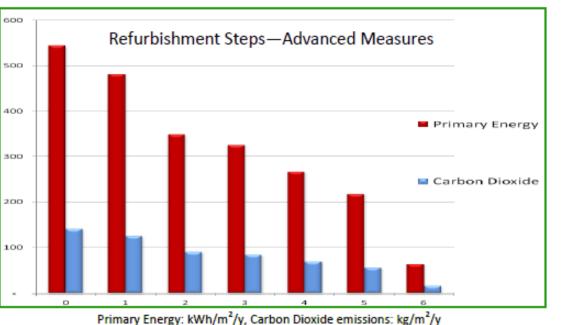
0.15

348

Consumption of primary energy re-

Carbon dioxide reduced by:

duced by:


90 E2

480 kWh/m²/y

124 kgCO₂/m²/y

G

package also includes draught stripping, 80mm lagging jacket for HW cylinder and low energy bulbs.

Estimated costs and payback time**						
Measure	Measure Estimated costs Payback (y)					
Step 1	€ 2,354	3.1				
Step 2	€ 23,693	16.3				
Step 3	€ 754	2.9				
Step 4	€ 12,887	20.1				
Step 5	€3,847	7.1				
Step 6	€ 20,101	12.6				
Total	€ 63,636	12.15				
Advanced upgrade summary						

^{**}Note: 1. Costs are indicative only, based on typical prices (2014). 2. Measures analysed are one of many options, especially for the renewable heating systems.

Tips when planning Retrofits

- Address heat loss and ventilation losses before considering heating systems or renewables
- 2. Reduce heat losses via insulation upgrades to roofs, walls, floors (where possible), windows, doors with priority for shortest paybacks
- 3. Reduce ventilation losses via draught-proofing or replacement ensure adequate ventilation is maintained and establish a ventilation strategy
- 4. Looking to the longer term, consider space and water heating options that will offer lowest running costs and/or best environmental impacts
- 5. For best final BER scores, be sure only to use materials or products with recognised Agrement / Test certificates

 S.R. 54:2014 – Code of Practice for the energy efficient retrofit of buildings

Standard Recommendation S.R. 54:2014

Code of practice for the energy efficien retrofit of dwellings

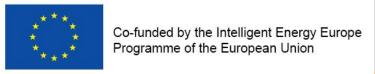
S.R. 54:2014

EPISCOPE Pilot Action: Tracking Energy Refurbishment on Northside of Dublin City

Pilot Action Area data:

- Population: 307,000
- 134,000 dwellings

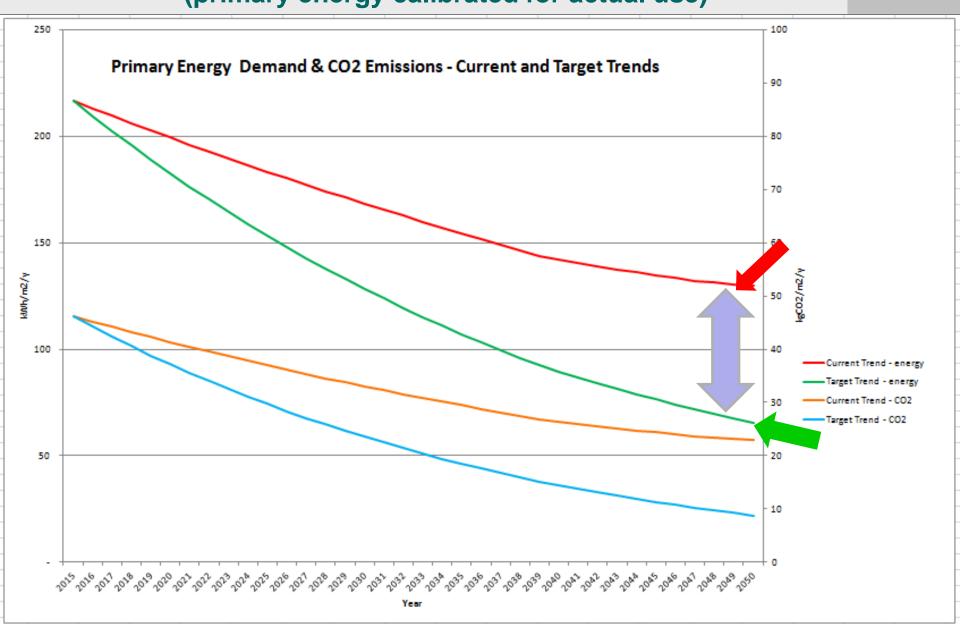
Walkinsto


- 1,242 Small Areas (50-200 dwellings. Lowest level for compilation of statistics in line with data protection. Must nest within Electoral Divisions)
- 93 Electoral Divisions (smallest legally defined administrative areas in the State for which Small Area Population Statistics are published from the Census)

Aggregate Annual RefurbishmentRate/Trend – Northside of Dublin City

Aggregate Trend (annual):					
Element	3 * National Progr'mes	Field survey	BER Research Tool	Aggregate trend	
Walls	1.06%	2.20%	2.50%	2.40%	
Roofs	0.76%	4.50%	2.60%	3.60%	
Windows	N.A.	3.20%	2.20%	2.70%	
Boilers	0.51%	4.20%	2.00%	3.10%	
Controls	0.04%	0.80%	N.A.	0.80%	

Aggregate trend gives base assumption for 'business as usual' Trend Scenario



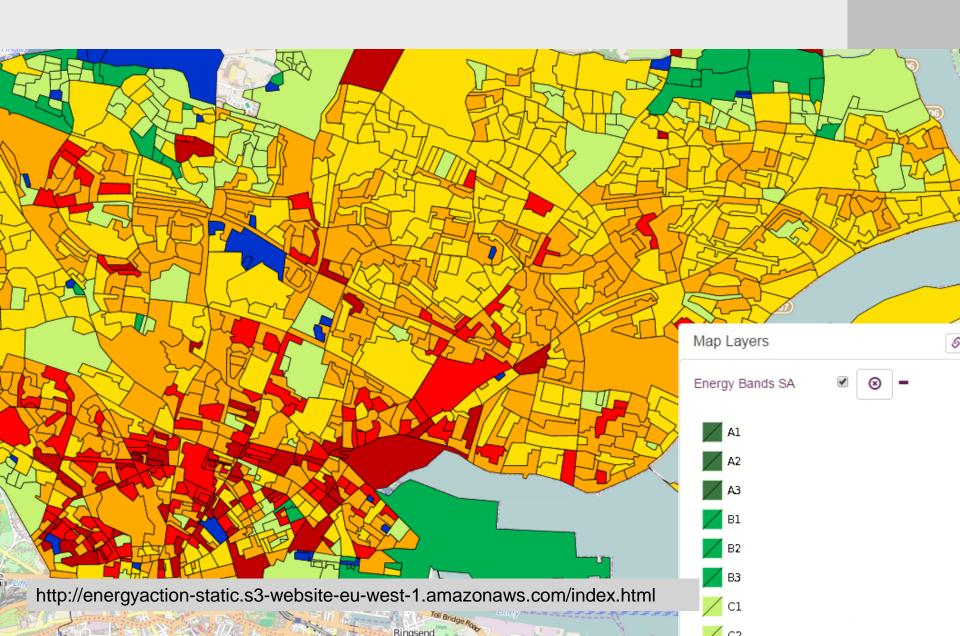
Current Trends & Target Trends

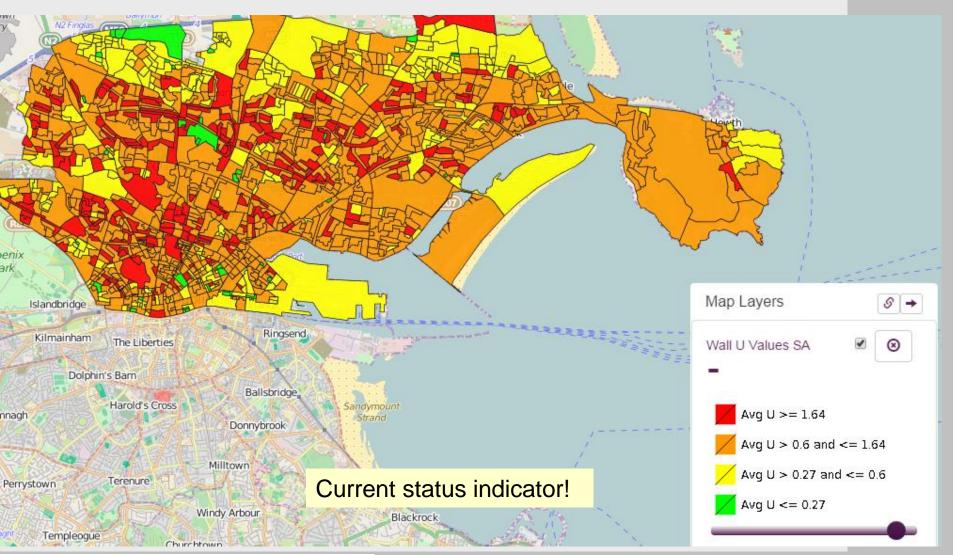
(primary energy calibrated for actual use)

EPISCOPE Pilot Action Target Scenario

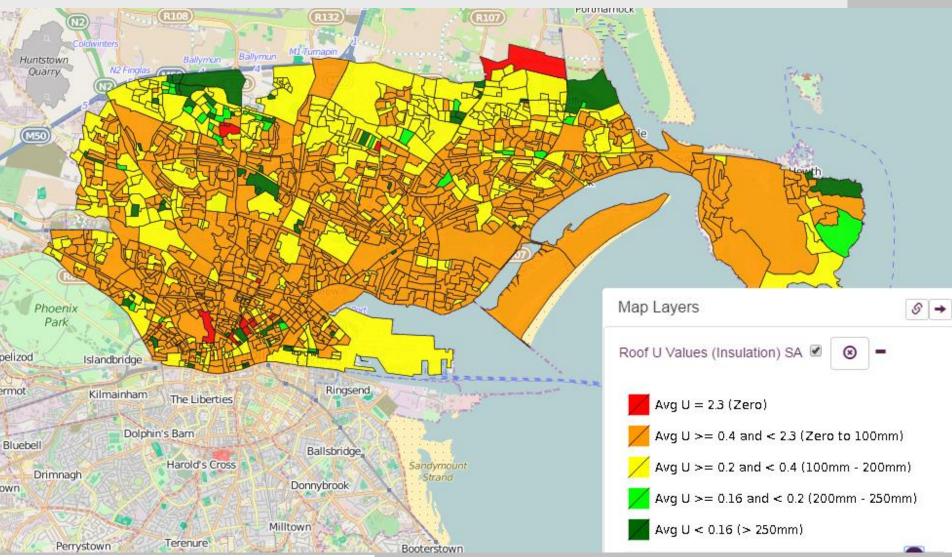
To bridge the gap to achieve 80% by 2050 will require, in addition to the current trend, we need to achieve

- a DEEP retrofit of 75% of the residential stock (i.e. to primary energy value of circa 43 kWh/m2/year)
- A 65% decarbonisation of the electricity grid

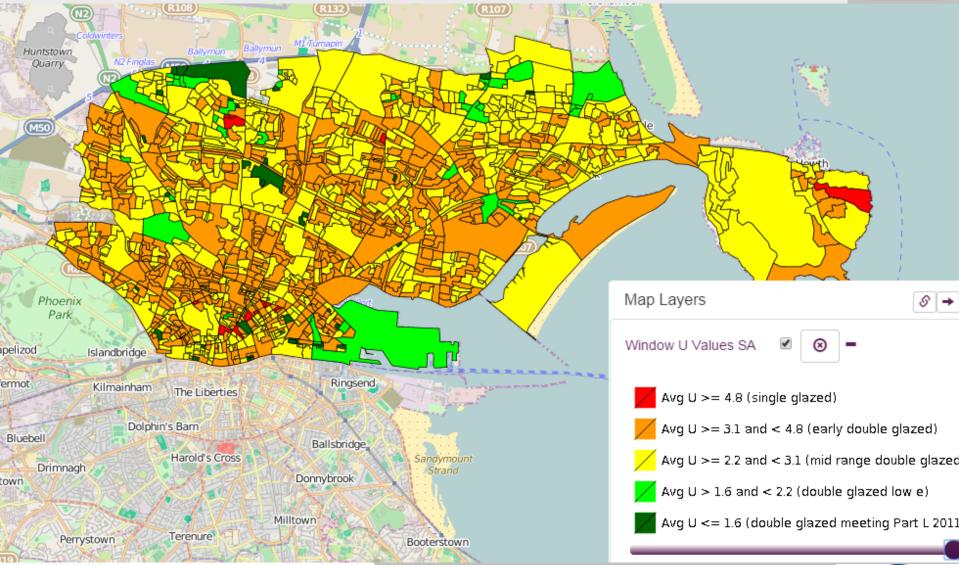

Here's a mapped view


BER Ratings – average D2

Wall U Values

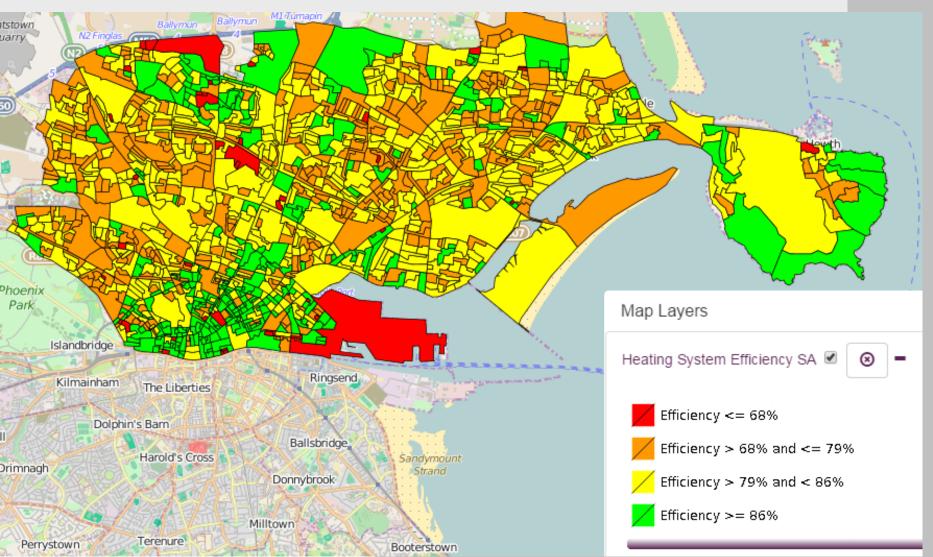


Roof U Values



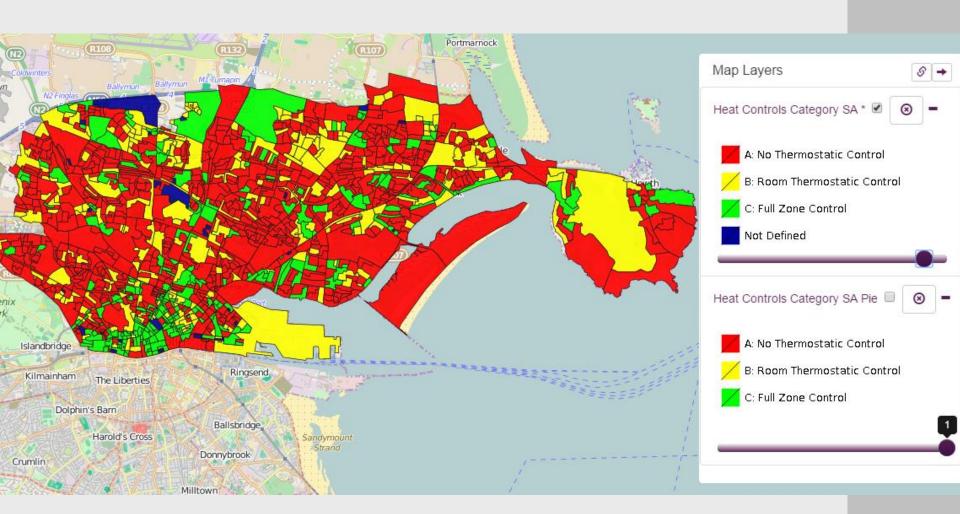
EPISCOPE

Window U Values

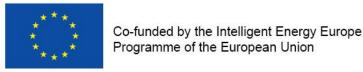


Co-funded by the Intelligent Energy Europe Programme of the European Union

Primary Heating Efficiency



Heating Controls



Conclusion

- > Huge amount of energy retrofit to be done
- The involvement of local community groups is critical
 - one-off retrofits won't suffice
- > Lots of excellent resources available
- ➤ Finally, watch out for NZEB Open Door events weekend of 11th 13th November 2016

www.nzeb-opendoors.ie

